Extensions 1→N→G→Q→1 with N=C23 and Q=C2×C7⋊C3

Direct product G=N×Q with N=C23 and Q=C2×C7⋊C3
dρLabelID
C24×C7⋊C3112C2^4xC7:C3336,220

Semidirect products G=N:Q with N=C23 and Q=C2×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C23⋊(C2×C7⋊C3) = C2×AΓL1(𝔽8)φ: C2×C7⋊C3/C2C7⋊C3 ⊆ Aut C23147+C2^3:(C2xC7:C3)336,210
C232(C2×C7⋊C3) = C22×C7⋊A4φ: C2×C7⋊C3/C14C3 ⊆ Aut C2384C2^3:2(C2xC7:C3)336,222
C233(C2×C7⋊C3) = C2×D4×C7⋊C3φ: C2×C7⋊C3/C7⋊C3C2 ⊆ Aut C2356C2^3:3(C2xC7:C3)336,165

Non-split extensions G=N.Q with N=C23 and Q=C2×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C23.(C2×C7⋊C3) = C4×C7⋊A4φ: C2×C7⋊C3/C14C3 ⊆ Aut C23843C2^3.(C2xC7:C3)336,171
C23.2(C2×C7⋊C3) = C22⋊C4×C7⋊C3φ: C2×C7⋊C3/C7⋊C3C2 ⊆ Aut C2356C2^3.2(C2xC7:C3)336,49
C23.3(C2×C7⋊C3) = C22×C4×C7⋊C3central extension (φ=1)112C2^3.3(C2xC7:C3)336,164

׿
×
𝔽